Precalculus

12-05 Integrals

Properties of Sums

$\sum_{i=1}^{n} c=c n$
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=\frac{n^{2}+n}{2}$
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{2 n^{3}+3 n^{2}+n}{6}$
$\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}=\frac{n^{4}+2 n^{3}+n^{2}}{4}$

- Associative Property
$\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$
- Distributive Property (Factoring)
$\sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i}$
Find the limit of $S_{n}=\sum_{i=1}^{n} \frac{i-5}{n^{2}}$ as $n \rightarrow \infty$
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i-5}{n^{2}}$

The Area Problem

- Find the area between the graph and the x-axis between two x-values a and b

$$
\text { Area }=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{b-a}{n} i\right)\left(\frac{b-a}{n}\right)
$$

Find the area bounded by $f(x)=2 x^{2}$ and $x=0$ and $x=1$

Find the area bounded by $f(x)=4 x-x^{2}$ and $x=1$ to $x=3$

